既SVM實驗後,接著實驗高階的SVM。首先還是要瞭解支持向量機器 (Support Vector Machine)和非線性支持向量機器 (Non-linear SVMs),先前的SVM實驗也可以參考。

怎麼決定超平面(hyperplane)?讓錯誤分類(misclassification)的點距離正確決策區域(correct decision regions)盡可能地小。
- 環境設定:Visual Studio 2010 安裝 OpenCV 2.4
- 範例程式:C:\OpenCV2.4.3\samples\cpp\tutorial_code\ml\non_linear_svmss\non_linear_svms.cpp
程式碼:
/**
Theme: Support Vector Machines for Non-Linearly Separable Data
compiler: Visual Studio 2010 with OpenCV 2.4.3
Date: 101/11/13
Author: HappyMan
Blog: https://cg2010studio.wordpress.com/
*/
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/ml/ml.hpp>
#define NTRAINING_SAMPLES 100 // Number of training samples per class
#define FRAC_LINEAR_SEP 0.7f // Fraction of samples which compose the linear separable part
using namespace cv;
using namespace std;
int main(){
// Data for visual representation
const int WIDTH = 512, HEIGHT = 512;
Mat I = Mat::zeros(HEIGHT, WIDTH, CV_8UC3);
//----- 1. Set up training data randomly
Mat trainData(2*NTRAINING_SAMPLES, 2, CV_32FC1);
Mat labels(2*NTRAINING_SAMPLES, 1, CV_32FC1);
RNG rng(777); // Random value generation class
//---Set up the linearly separable part of the training data
int nLinearSamples = (int) (FRAC_LINEAR_SEP * NTRAINING_SAMPLES);
// Generate random points for the class 1
Mat trainClass = trainData.rowRange(0, nLinearSamples);
// The x coordinate of the points is in [0, 0.4)
Mat c = trainClass.colRange(0, 1);
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(0.4 * WIDTH));
// The y coordinate of the points is in [0, 1)
c = trainClass.colRange(1,2);
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
// Generate random points for the class 2
trainClass = trainData.rowRange(2*NTRAINING_SAMPLES-nLinearSamples, 2*NTRAINING_SAMPLES);
// The x coordinate of the points is in [0.6, 1]
c = trainClass.colRange(0 , 1);
rng.fill(c, RNG::UNIFORM, Scalar(0.6*WIDTH), Scalar(WIDTH));
// The y coordinate of the points is in [0, 1)
c = trainClass.colRange(1,2);
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
//---Set up the non-linearly separable part of the training data
// Generate random points for the classes 1 and 2
trainClass = trainData.rowRange( nLinearSamples, 2*NTRAINING_SAMPLES-nLinearSamples);
// The x coordinate of the points is in [0.4, 0.6)
c = trainClass.colRange(0,1);
rng.fill(c, RNG::UNIFORM, Scalar(0.4*WIDTH), Scalar(0.6*WIDTH));
// The y coordinate of the points is in [0, 1)
c = trainClass.colRange(1,2);
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
//---Set up the labels for the classes
labels.rowRange(0, NTRAINING_SAMPLES).setTo(1); // Class 1
labels.rowRange(NTRAINING_SAMPLES, 2*NTRAINING_SAMPLES).setTo(2); // Class 2
//----- 2. Set up the support vector machines parameters
CvSVMParams params;
params.svm_type = SVM::C_SVC;
params.C = 0.1;
params.kernel_type = SVM::LINEAR;
params.term_crit = TermCriteria(CV_TERMCRIT_ITER, (int)1e6, 1e-6);
//----- 3. Train the svm
cout << "Starting training process" << endl;
CvSVM svm;
svm.train(trainData, labels, Mat(), Mat(), params);
cout << "Finished training process" << endl;
//----- 4. Show the decision regions
Vec3b green(10,100,10), blue (100,10,10);
for (int i = 0; i < I.rows; ++i)
for (int j = 0; j < I.cols; ++j){
Mat sampleMat = (Mat_<float>(1,2) << i, j);
float response = svm.predict(sampleMat);
if (response == 1) I.at<Vec3b>(j, i) = green;
else if (response == 2) I.at<Vec3b>(j, i) = blue;
}
//----- 5. Show the training data
int thick = -1;
int lineType = 8;
int radius = 3;
float px, py;
// Class 1
for (int i = 0; i < NTRAINING_SAMPLES; ++i){
px = trainData.at<float>(i,0);
py = trainData.at<float>(i,1);
circle(I, Point( (int) px, (int) py ), radius, Scalar(0, 255, 0), thick, lineType);
}
// Class 2
for (int i = NTRAINING_SAMPLES; i <2*NTRAINING_SAMPLES; ++i){
px = trainData.at<float>(i,0);
py = trainData.at<float>(i,1);
circle(I, Point( (int) px, (int) py ), radius, Scalar(255, 0, 0), thick, lineType);
}
//----- 6. Show support vectors
thick = 2;
lineType = 8;
int x = svm.get_support_vector_count();
for (int i = 0; i < x; ++i){
const float* v = svm.get_support_vector(i);
circle( I, Point( (int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thick, lineType);
}
imwrite("result.png", I); // save the Image
imshow("SVM for Non-Linear Training Data", I); // show it to the user
waitKey(0);
}
執行結果:
亂數種子100,類別樣本數100,正確樣本比例0.9。

亂數種子777,類別樣本數100,正確樣本比例0.9。

亂數種子777,類別樣本數100,正確樣本比例0.7。

亂數種子777,類別樣本數10,正確樣本比例0.7。

還有很多參數可以設定,類別樣本數100時,我跑程式的時間約1分鐘!關鍵在於這一行程式碼:
- params.term_crit = TermCriteria(CV_TERMCRIT_ITER, (int)1e6, 1e-6);
程式步驟依序:
- Set up training data randomly
- Set up the linearly separable part of the training data
- Set up the non-linearly separable part of the training data
- Set up the labels for the classes
- Set up the support vector machines parameters
- Train the svm
- Show the decision regions
- Show the training data
- Show support vectors
參考:OpenCV v2.4.3 documentation – Support Vector Machines for Non-Linearly Separable Data。
隨意留個言吧:)~