Just a Computer Graphics Studio & My Life

看了Learning OpenCV的第11章Camera Models and Calibration,知道每個鏡頭都有鏡面曲率,這會影響到攝影的結果,讓原本是方形的物體成像後變成桶狀,這對影像處理影響深遠,所以有必要做相機矯正 (Camera Calibration)

這裡使用一個鏡頭和一張棋盤,如圖所示,擷取多張不同角度的棋盤影像。

接著程式會找尋影像中的「角」,判斷是否為我們所指定的棋盤,並且在影像上做標記。

最後使用相機內部參數來矯正影像。

範例程式11-1我修改如下:

/**
	Theme: calibrate the camera
	Compiler: Dev C++ 4.9.9.2
	Date: 101/01/03
	Author: HappyMan
	Blog: https://cg2010studio.wordpress.com/
*/
// Reading a chessboard's width and height, reading and collecting the
// requested number of views, and calibrating the camera
#include <cv.h>
#include <highgui.h>
#include <stdio.h>
#include <stdlib.h>
#include<iostream>
using namespace std;
int n_boards = 0; //Will be set by input list
int board_dt = 90; //Wait 90 frames per chessboard view
int board_w;
int board_h;
int main() {
  CvCapture* capture;// = cvCreateCameraCapture( 0 );
 // assert( capture );
  board_w  = 6;
  board_h  = 9;
  n_boards = 5;
  board_dt = 20;
  int board_n  = board_w * board_h;// 格子數=寬*高
  int board_nx  = (board_w-1) * (board_h-1);// 內部角個數=(寬-1)*(高-1)
  CvSize board_sz = cvSize( board_w-1, board_h-1 );// 內部row和column的角個數
  capture = cvCreateCameraCapture( 0 );
  if(!capture) {
    printf("\nCouldn't open the camera\n");
    system("pause");
    return -1;
  }
  cvNamedWindow( "Calibration" );
  cvNamedWindow( "Raw Video");
  //ALLOCATE STORAGE
  CvMat* image_points      = cvCreateMat(n_boards*board_n,2,CV_32FC1);
  CvMat* object_points     = cvCreateMat(n_boards*board_n,3,CV_32FC1);
  CvMat* point_counts      = cvCreateMat(n_boards,1,CV_32SC1);
  CvMat* intrinsic_matrix  = cvCreateMat(3,3,CV_32FC1);
  CvMat* distortion_coeffs = cvCreateMat(4,1,CV_32FC1);

  CvPoint2D32f* corners = new CvPoint2D32f[ board_n ];
  int corner_count;
  int successes = 0;
  int step, frame = 0;

  IplImage *image = cvQueryFrame( capture );
  IplImage *gray_image = cvCreateImage(cvGetSize(image),8,1);//subpixel
  // CAPTURE CORNER VIEWS LOOP UNTIL WE?E GOT n_boards
  // SUCCESSFUL CAPTURES (ALL CORNERS ON THE BOARD ARE FOUND)
  int countx=0;// 擷取次數
  while(successes < n_boards) {
    //Skip every board_dt frames to allow user to move chessboard
    if((frame++ % board_dt) == 0) {
       //Find chessboard corners:
       int found = cvFindChessboardCorners(
                image, board_sz, corners, &corner_count,
                CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_FILTER_QUADS
       );
       cout<<"found: "<<found<<endl;
       cout<<"corner_count: "<<corner_count<<endl;
       //Get Subpixel accuracy on those corners
       cvCvtColor(image, gray_image, CV_BGR2GRAY);
       cvFindCornerSubPix(gray_image, corners, corner_count,
                  cvSize(10,10),cvSize(-1,-1), cvTermCriteria(
                  CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 30, 0.1 ));
       //Draw it
       cvDrawChessboardCorners(image, board_sz, corners,
                  corner_count, found);
       //cvShowImage( "Calibration", image );

       // If we got a good board, add it to our data
       if( corner_count == board_nx ) {
          countx++;
          cvShowImage( "Calibration", image ); //show in color if we did collect the image
          step = successes*board_n;
          for( int i=step, j=0; j<board_n; ++i,++j ) {
             CV_MAT_ELEM(*image_points, float,i,0) = corners[j].x;
             CV_MAT_ELEM(*image_points, float,i,1) = corners[j].y;
             CV_MAT_ELEM(*object_points,float,i,0) = j/board_w;
             CV_MAT_ELEM(*object_points,float,i,1) = j%board_w;
             CV_MAT_ELEM(*object_points,float,i,2) = 0.0f;
          }
          CV_MAT_ELEM(*point_counts, int,successes,0) = board_n;
          successes++;
          printf("Collected our %d of %d needed chessboard images\n",successes,n_boards);
       }
       else{
         countx++;
         cvShowImage( "Calibration", gray_image ); //Show Gray if we didn't collect the image
         cout<<countx<<endl;
       }
    } //end skip board_dt between chessboard capture

    //Handle pause/unpause and ESC
    int c = cvWaitKey(15);
    if(c == 'p'){
       c = 0;
       while(c != 'p' && c != 27){
            c = cvWaitKey(250);
       }
     }
     if(c == 27)
        return 0;
    image = cvQueryFrame( capture ); //Get next image
    cvShowImage("Raw Video", image);
  } //END COLLECTION WHILE LOOP.
  cvDestroyWindow("Calibration");
  printf("\n\n*** CALLIBRATING THE CAMERA...");
  //ALLOCATE MATRICES ACCORDING TO HOW MANY CHESSBOARDS FOUND
  CvMat* object_points2  = cvCreateMat(successes*board_n,3,CV_32FC1);
  CvMat* image_points2   = cvCreateMat(successes*board_n,2,CV_32FC1);
  CvMat* point_counts2   = cvCreateMat(successes,1,CV_32SC1);
  //TRANSFER THE POINTS INTO THE CORRECT SIZE MATRICES
  for(int i = 0; i<successes*board_n; ++i){
      CV_MAT_ELEM( *image_points2, float, i, 0) =
             CV_MAT_ELEM( *image_points, float, i, 0);
      CV_MAT_ELEM( *image_points2, float,i,1) =
             CV_MAT_ELEM( *image_points, float, i, 1);
      CV_MAT_ELEM(*object_points2, float, i, 0) =
             CV_MAT_ELEM( *object_points, float, i, 0) ;
      CV_MAT_ELEM( *object_points2, float, i, 1) =
             CV_MAT_ELEM( *object_points, float, i, 1) ;
      CV_MAT_ELEM( *object_points2, float, i, 2) =
             CV_MAT_ELEM( *object_points, float, i, 2) ;
  }
  for(int i=0; i<successes; ++i){ //These are all the same number
    CV_MAT_ELEM( *point_counts2, int, i, 0) =
             CV_MAT_ELEM( *point_counts, int, i, 0);
  }
  cvReleaseMat(&object_points);
  cvReleaseMat(&image_points);
  cvReleaseMat(&point_counts);
  // At this point we have all of the chessboard corners we need.
  // Initialize the intrinsic matrix such that the two focal
  // lengths have a ratio of 1.0
  CV_MAT_ELEM( *intrinsic_matrix, float, 0, 0 ) = 1.0f;
  CV_MAT_ELEM( *intrinsic_matrix, float, 1, 1 ) = 1.0f;
  //CALIBRATE THE CAMERA!
  cvCalibrateCamera2(
      object_points2, image_points2,
      point_counts2,  cvGetSize( image ),
      intrinsic_matrix, distortion_coeffs,
      NULL, NULL,0  //CV_CALIB_FIX_ASPECT_RATIO
  );
  // SAVE THE INTRINSICS AND DISTORTIONS
  printf(" *** DONE!\n\nStoring Intrinsics.xml and Distortions.xml files\n\n");
  cvSave("Intrinsics.xml",intrinsic_matrix);
  cvSave("Distortion.xml",distortion_coeffs);

  // EXAMPLE OF LOADING THESE MATRICES BACK IN:
  CvMat *intrinsic = (CvMat*)cvLoad("Intrinsics.xml");
  CvMat *distortion = (CvMat*)cvLoad("Distortion.xml");

  // Build the undistort map which we will use for all
  // subsequent frames.
  IplImage* mapx = cvCreateImage( cvGetSize(image), IPL_DEPTH_32F, 1 );
  IplImage* mapy = cvCreateImage( cvGetSize(image), IPL_DEPTH_32F, 1 );
  cvInitUndistortMap(
    intrinsic,
    distortion,
    mapx,
    mapy
  );
  // Just run the camera to the screen, now showing the raw and
  // the undistorted image.
   IplImage *r = cvCreateImage(cvGetSize(image),8,1);//subpixel
   IplImage *g = cvCreateImage(cvGetSize(image),8,1);//subpixel
   IplImage *b = cvCreateImage(cvGetSize(image),8,1);//subpixel
  cvNamedWindow( "Undistort" );
  while(image) {
    cvShowImage( "Raw Video", image ); // Show raw image
    //system("pause");
       cvSplit(image, r,g,b, NULL);
       cvRemap( r, r, mapx, mapy ); // Undistort image
       cvRemap( g, g, mapx, mapy ); // Undistort image
       cvRemap( b, b, mapx, mapy ); // Undistort image
       cvMerge(r,g,b, NULL, image);
    //cvRemap( image, t, mapx, mapy );     // Undistort image
    cvShowImage("Undistort", image);     // Show corrected image
    //Handle pause/unpause and ESC
    int c = cvWaitKey(15);
    if(c == 'p'){
       c = 0;
       while(c != 'p' && c != 27){
            c = cvWaitKey(250);
       }
    }
    if(c == 27)
        break;
    image = cvQueryFrame( capture );
  }
  return 0;
}

在此只需要控制四個參數,即可達到我們的需求:

board_w = 6;棋盤的寬
board_h = 9;棋盤的高
n_boards = 5;擷取棋盤個數
board_dt = 20;每frame擷取影像

若影像中棋盤不符合所要求,將不會有任何結果。

若有找到,則會標記每個角,顏色順序為紅、橙、黃、綠、藍、靛、紫








若沒有完全找到符合的角個數,則會在找到的角標記紅色,可看到影像中棋盤遠近、搖晃、角度等狀況下的找尋狀況。

接下來使用已經尋得的參數來矯正webcam影像。

以上為失敗的矯正結果,可以看到下方影像mapping完全錯誤! 接著使用他人尋得的參數。

看樣子是類似魚眼鏡頭的參數,其所儲存的.xml擋資料如下:

Intrinsics.xml中內容為:

<?xml version="1.0"?>
<opencv_storage>
<Intrinsics type_id="opencv-matrix">
  <rows>3</rows>
  <cols>3</cols>
  <dt>f</dt>
  <data>
    649.64843750 0. 288.47882080 0. 647.89129639 271.92953491 0. 0. 1.</data></Intrinsics>
</opencv_storage>

Distortion.xml中內容為:

<?xml version="1.0"?>
<opencv_storage>
<Distortion type_id="opencv-matrix">
  <rows>5</rows>
  <cols>1</cols>
  <dt>f</dt>
  <data>
    -0.37764871 22.05950546 0.06449836 -0.03288389 -209.10910034</data></Distortion>
</opencv_storage>

參考:Fisheye to Rectilinear ConversionCalibrating a camera: TheoryCalibrating & Undistorting with OpenCV in C++ (Oh yeah)cvRemap () crash – Stack Overflow

Advertisements

Comments on: "[OpenCV] 相機矯正 (Camera Calibration)" (1)

  1. 老實說,用一顆鏡頭來矯正的效果不好,所以我採用兩顆鏡頭來實做。

    喜歡

發表留言

在下方填入你的資料或按右方圖示以社群網站登入:

WordPress.com Logo

您的留言將使用 WordPress.com 帳號。 登出 / 變更 )

Twitter picture

您的留言將使用 Twitter 帳號。 登出 / 變更 )

Facebook照片

您的留言將使用 Facebook 帳號。 登出 / 變更 )

Google+ photo

您的留言將使用 Google+ 帳號。 登出 / 變更 )

連結到 %s

標籤雲

%d 位部落客按了讚: